
Approximating Images with Epicycles

Barry Liu and Edward Yang

June 2018

Contents

1 Introduction 2

2 The Fourier Transform 2
2.1 The Equations . 2
2.2 How Does it Work? . 3
2.3 Why Does it Work? . 3
2.4 Applications . 3

2.4.1 Sound Processing . 4
2.4.2 Heisenberg Uncertainty Principle 5

3 Extracting Fourier Coefficients for Epicycles 5
3.1 Approximation-Specific Issues . 6

4 Converting Images to Sampleable Discrete Functions 7
4.1 Greedy Algorithm . 7
4.2 Unresolved Computational Issues 8

5 Example Results 9

6 Conclusion 10

Bibliography 11

1

1 Introduction

For centuries, the concept of epicycles—paths composed of circles moving
along other circles—have been used to describe astronomical motions, ranging
from the motions of our own moon to those of Venus or Mars. Interestingly, this
same concept has a very convenient mathematical formalism that bears many
similarities in form to that of the Fourier transform. As we will show in this
paper, this means that we can apply much of the same logic and methodology
of the Fourier transform to epicycles. As a result, epicycles, while seemingly
reasonable to describe astronomical paths for their time, are actually capable
of describing any path, and do not actually provide much insight into the true
motions of astronomical objects. While inconvenient for the ideas of classical
astronomers, this same result means that we can use epicycles to create approx-
imations of images, the main application of this paper. We take advantage of
modern computing capabilities and algorithms to accomplish this, in the form of
mathematical computing libraries, graphical libraries, and custom algorithms.
Our methodology produces good quality results that provide recognizable ap-
proximations of input images. Even still, there remain improvements to be made
and further exploration of this idea may be undertaken in the future.

2 The Fourier Transform

The Fourier transform takes a function as an input and outputs another
function, but the output function has an independent variable different from
the input. In this case, the Fourier transform takes in a function of time such
as a waveform or signal and decomposes the function into a function of fre-
quency. The domain of the input function is the time, and the range is the in-
tensity/amplitude, whereas the output function is represented with a frequency
domain. Frequency domain refers to the analysis of a signal with respect to
frequency, instead of time. This means, rather than showing how a function
changes over time, it shows how much each frequency is present in the original
function.

Fourier’s Theorem states that a periodic function can be rewritten as the sum
of sinusoidal functions, also known as a Fourier Series. The Fourier transform
applies the ideas of the Fourier Series to non-periodic functions.

2.1 The Equations

The Fourier Transform:

f̂(ξ) =

∫ ∞
−∞

f(x)e−2πixξdx

The Inverse Fourier Transform:

f(x) =

∫ ∞
−∞

f̂(ξ)e2πixξdξ

2

The Multidimensional Discrete Fourier Transform (DFT):

Xk =

N−1∑
n=0

e−2πik·(n/N)xn

2.2 How Does it Work?

The Fourier transform of a function f(t) is defined by

f̂(ξ) =

∫ ∞
−∞

f(t)e−2πixξdt

The result is a function of frequency f̂(ξ). f̂(ξ) tells us how much power f(t)
contains at the frequency ξ, and is also known as a power spectrum. The sign of
the complex function is arbitrary convention and can be changed accordingly.

In order to simplify the concept, we can represent the signal in a different
way by wrapping it around a circle, with the radius at time t, being equivalent
to the amplitude at time t of the original function. In this situation, we have
two frequencies. The frequency of the signal, measured in beats per second, and
the frequency at which we are rotating around the circle, measured in cycles per
second.

If we track the average value of the Fourier transform by graphing the average
value as the distance from the origin against the frequency, we notice that when
the frequency at which we are wrapping matches the frequency of the signal,
there is a spike in the distance from the origin at the frequency. Doing this for
a signal will reveal every frequency that is present and in what proportions. If
we use the inverse Fourier transform on the distance vs. frequency graph, the
result will be the original function.

2.3 Why Does it Work?

The Fourier transform can be derived from the Fourier series using trigono-
metric identities. The Fourier transform is the Fourier series extended to infinity.
The Fourier series is used to represent a periodic function by a discrete sum of
complex exponentials, while the Fourier transform is then used to represent a
general, non-periodic function by an integral of complex exponentials.

In a classical approach, it would not be possible to use the Fourier transform
for a non-periodic function. The use of generalized functions, however, frees us
of that restriction and makes it possible to look at the Fourier transform of a
non-periodic function.

2.4 Applications

The Fourier transform has a lot of direct applications to fields such as digital
signal processing and physics. In signal processing, wave functions like signals
can be broken down into their constituent frequencies and modified. In physics,

3

it is common for quantum physicists to switch between position and momentum
functions through the use of a Fourier transform. In both of these situations,
the inherent properties of the Fourier transform make the problem much simpler
to solve.

2.4.1 Sound Processing

The Fourier transform is a very important tool in sound processing. Much of
the sound we hear is generated by a variety of audio machines. The information
these machines use to create sound is usually stored and represented digitally
which allows it to be easily manipulated by computers.

A common usage of the Fourier transform is blocking out certain unwanted
frequencies through the use of a Fourier filter. The Fourier filter works by taking
the Fourier transform of a signal, attenuating specific frequencies, and finally
using the inverse Fourier transform to produce the desired signal with the un-
wanted frequencies removed.

In the top-left is a signal of what appears to be random noise. The pic-
ture next to it is the power spectrum of the signal. A power spectrum shows

4

the distribution of the energy of a waveform among its frequencies. In other
words, it shows the intensity of each frequency in proportion to the others. The
bottom-left picture expands the power spectrum and more clearly shows the
low-frequency region. The Fourier filter can be used to remove the higher har-
monics and using the inverse Fourier transform, we can reconstruct the signal.
The result (bottom-right) shows that the signal contained two bands at x=200
and x=300 that were completely obscured by the noise in the original signal.

2.4.2 Heisenberg Uncertainty Principle

Another common application of the Fourier transform is Heisenberg’s Uncer-
tainty Principle. Heisenberg’s Uncertainty Principle states that the position and
velocity of a particle cannot simultaneously be known, and that they must obey
a specific inequality, which states that the product of their uncertainties must
always be greater than or equal to a constant. This means the more precisely
defined one is, the more uncertain the other is.

In Physics, it is common for physicists to switch between particles’ functions
and the Fourier transform of their functions, because particles with a lot of mo-
mentum and energy will also have high frequencies. In order to move between
position and velocity bases in quantum mechanics, a Fourier transform is re-
quired. If you have a wave function in coordinate-space and you want to find the
wave function in momentum-space, you Fourier transform the coordinate-space
wave function. The inverse Fourier transform can also be used to go from a
momentum-space wave function to a coordinate-space wave function.

3 Extracting Fourier Coefficients for Epicycles

Let F (t) be some closed function such that F : R→ C.

5

By Fourier’s Theorem, we can express any such F (t) as a sum of sines or cosines.
Let T be the period of the function. Thus:

F (t) =

∞∑
n=0

[
Bn cos

(
2πnt

T
+ φn

)
+ Cni sin

(
2πnt

T
+ φn

)]
If we allow An ∈ C:

F (t) =

∞∑
n=0

(
An

[
cos

(
2πnt

T

)
+ i sin

(
2πnt

T

)])
Applying Euler’s Identity:

eiθ = cos(θ) + i sin(θ)

We find:

F (t) =

∞∑
n=0

Ane
2πitn
T

This bears a very clear resemblance to the inverse DFT, denoted as F−1[k(x)].

F−1[k(x)] =

N−1∑
x=0

k(x)e
2πix
N

In this case, An = k(x), and we wish to find the coefficients An. Thus, because
F (t) matches the form of the inverse DFT of these coefficients, we can simply
apply the DFT to F (t) to extract these coefficients.

At = F [F (t)] =

N−1∑
t=0

F (t)e
−2πit
N

Thus, we now have At. At = a + bi, where |At| represents the amount of the
frequency (aka the radius) present in the function, and b represents the phase
offset, in that arctan(ba) = φt. We can then use these values to draw circles with
these specific frequencies of rotation and associated radii and phase offsets. This
is essentially performing a graphical version of the inverse DFT, which will trace
our original image.

3.1 Approximation-Specific Issues

As we can see from the differences between our original function and the
DFT, we are no longer adding an infinite series. This means that we are only
getting an imperfect approximation of our original function. Even still, in or-
der to get a good sample of data, we need a large number of original points.
However, using the DFT, the number of input datapoints is also the number
of output datapoints. This large number of equivalent output circles in our

6

epicycle presents a challenge to draw quickly, and so we only take a subset of
the output circles to draw with. These circles are chosen to be those with the
highest intensities (largest radii), as these are relatively higher weighted than
the others, and thus would contribute more to any potential error. Because
of particularities in the FFT (a way of calculating the DFT quickly) function
built-in to the python libraries we used, we use the fftshift function to shift
our output, which results in an output range of frequencies from −(T − 1)/2 to
(T − 1)/2. This means that we can extract the circle with a frequency of 0 and
use it as our offset, as having a static circle drawn in the center of the animation
tends to be distracting to the viewer.

4 Converting Images to Sampleable Discrete Func-
tions

We can use our library functions to read in arbitrary images. After reading
in these images, we first convert these images to black and white with the
binarize function. After we have a binarized image, we can use library built-
ins to find the contours of the image. These library functions use the marching
squares algorithm to do so. This leaves us with a set of contours, each of which
is defined as an ordered set of points.

However, this set of contours still does not satisfy our need for a single
traceable function. In order to create a single traceable function from these
contours, we need to connect each of these contours together in a way that
makes sense. When approaching this problem,we can clearly see that it is an
instance of the travelling salesman problem for the shortest path through all
of the points in the contours. The TSP is known to only have algorithms for
optimal solutions that run in O(n22n) time. Given that the number of points
present in each of these contours is on the scale of thousands of points, using
one of these exact algorithms for this problem is entirely unreasonable.

4.1 Greedy Algorithm

We instead choose to connect the contours with a sub-optimal algorithm.
This algorithm is a greedy algorithm, where we pick an arbitrary starting point,

7

and connect it to the next closest point, and so on and so forth, until we con-
nect all points together, and then connect back to the original. In the interest of
keeping the appearance of the original shapes, we can use the ordering of each
individual contour, and simply find connecting points between the contours and
use them to find how to rearrange the existing contours. We illustrate this vari-
ation between a simple greedy algorithm and our method below.

Simple Greedy Algorithm:

Our method:

4.2 Unresolved Computational Issues

As one can clearly observe from the above, we duplicate some parts of each
contour in our method so that the closedness of each individual contour is pre-
served, and the relative ordering of each point in the contours is preserved. This
allows us to sample the function to trace the original more accurately. This al-
gorithm has a runtime of O(n2), which is a vast improvement over the runtime
of the algorithm for the optimal solution. To calculate the distances quickly, we
take advantage of vectorized operations and complex numbers to calculate

D(p1, p2) = |p1 − p2| = |(x1 + iy1)− (x2 + iy2)|

extremely quickly in python. However, this method, while fast and easy to
implement, has the disadvantage of having a space requirement of O(n2). This
means that images with many contours of many points in their contours may
not be able to actually fit in memory, and thus crash the program. This could
easily be a point of optimization in the future, but is currently not handled.

8

5 Example Results

9

6 Conclusion

As the screenshots of our example results show, our method does a fairly
reasonable job of approximating the shape of input images, especially given
the computational limitations and compromises that we made in the interest of
saving time. The possibility for improvements, computationally, algorithmically,
and graphically, cannot be any more overstated. Although it was not touched
upon as much, the Fourier transform can be extended to even higher dimensions,
and this provides the idea of using the Fourier transform not just to approximate
the contours of images as we did here, but to approximate the entire image itself,
including color. Whether this is actually a space-effective form of compression
is an entirely different question, and is a likely place of exploration in the future,
although the usage of Fourier transforms in JPEG compression seems to provide
evidence that this is in fact useable. The applications of the Fourier transform
extend far beyond the scope of this paper, and it finds especially great use in
fields such as physics, signal processing, image processing, and more, and we
hope that this is just a stepping stone for what’s to come.

10

Bibliography

[1] 3Blue1Brown. But what is the fourier transform? a visual introduction.

[2] Brett van Zuiden. Drawing by epicycles.

[3] Mathematica Stack Exchange. How to create a new “person curve”?

[4] Mathematica Stack Exchange. Fourier series and epicycles - how to find the
radii and angular velocities from a function’s fourier series expansion.

[5] Michael Trott. Making formulas. . . for everything—from pi to the pink
panther to sir isaac newton.

[6] sclereid. About epicycles.

[7] Wikipedia. Deferent and epicycle.

11

	Introduction
	The Fourier Transform
	The Equations
	How Does it Work?
	Why Does it Work?
	Applications
	Sound Processing
	Heisenberg Uncertainty Principle

	Extracting Fourier Coefficients for Epicycles
	Approximation-Specific Issues

	Converting Images to Sampleable Discrete Functions
	Greedy Algorithm
	Unresolved Computational Issues

	Example Results
	Conclusion
	Bibliography

