
2018-19 FTC 3216 Autonomous and Control
Musings of an Overworked Programmer

Edward Yang

February 2019

Contents

1 Introduction 3

2 General Program Structure 4

3 Autonomous 5
3.1 Abstractification for Great Good . 5

3.1.1 Command System . 5
3.1.2 Compatibility with the FTC Stop System 7
3.1.3 Asynchronous Programming 7
3.1.4 Future Improvements . 8

3.2 I Know De Way: Path System . 9
3.2.1 Future Improvements . 9

3.3 I Can See Clearly Now: Sampling . 10
3.3.1 Initial OpenCV Experimentation 10
3.3.2 OpenCV Issues . 11
3.3.3 The Current State (TensorFlow Lite) 12
3.3.4 Future Improvements . 12

3.4 I’ve Gotta Feeling: Sensor Integration 13
3.4.1 Limit Switches . 13
3.4.2 Gyroscope . 13
3.4.3 Vuforia . 13
3.4.4 Future improvements . 14

3.5 The Circle of Life: PID and General Control 15
3.5.1 Usage . 15
3.5.2 Tuning by “Experienced Personnel” 15
3.5.3 Issues . 15
3.5.4 Future Improvements . 16

4 Driver Controlled 17
4.1 Towards a Sensor-Assisted Driver . 17

4.1.1 Learning to Dual Wield: Control Layout 17
4.1.2 The Elevator . 17
4.1.3 Arm Control (WIP) . 18

5 Writing an I2C Driver 19
5.1 Introduction . 19
5.2 Register Mapping . 19

1

5.3 Register Caching . 20
5.4 Generalization (Parameters) . 20
5.5 Unresolved Issues . 21
5.6 Sensor Fusion (WIP) . 21
5.7 Credits . 23

6 Teaching 24
6.1 Philosophy and Objectives . 24
6.2 First Assignment: 2-Stop Elevator . 25
6.3 Second Assignment: Drivebase Math 25
6.4 Third Assignment: Further Implementation of Drivebase (WIP) . . . 26

A File Hierarchy Diagram 27

B Assignment Code 30
B.1 Assignment 1 . 30
B.2 Assignment 2 . 31

Bibliography 34

2

1 Introduction

This year we fully intend to learn from the experience and mistakes that we’ve
had from previous years. The autonomous portion of the game is fairly straight-
forward, and we have aimed to do every part of it: delatching, sampling, claiming,
and parking. The majority of our time has been spent perfecting the ins-and-outs
of the autonomous section and the control of the robot in general. We’ve reused
and improved on much of the code of previous years, this time enhancing the mod-
ularization of the code and adding more sane defaults, while also integrating more
sensors and simplifying unnecessarily complex parts. We’ve made our robot move
more precisely with PID controllers and tuning, and gave it the ability to “see” with
gyroscopes, limit switches, new I2C sensors, and computer vision algorithms. Mo-
tion is smoother with addition of new control schemes and greater usage of odometry,
both autonomously and when the robot is controlled by a driver. In my time on 3216,
I fully intend to continue push both my own and my team’s knowledge of these fields
to the limit.

Tons of opportunities for enhancement still lie in wait: from more advanced
control algorithms like Ramsete [6] to greater customization of software, the sheer
number of interactions of robotics with fields like control theory and software are
vast and daunting. There’s still far too much to be learned and done that’s possible
in a year, but hopefully the next generation of my team will be able to take the
torch and go from here. Programming isn’t isn’t all just about raw, brute efficiency:
sometimes it’s just as much about the beauty and aesthetics of it all. At times,
simply seeing a clean, simple structure and the clarity of thought behind it, like in
some of the assignments I’ve graded, is enough to make it all worthwhile.

3

2 General Program Structure

In general, we split our code into 3 major sections: autonomous, common, and
components. The autonomous section holds, as the name would imply, our au-
tonomous code, which includes the command system structure, implemented com-
mands, the main autonomous program, and the starting-position specific opmodes
to run them. The common section holds some of the code that is reused through-
out the program, including vector math global constants, and enumerations like
SamplingConfiguration or StartLocation. Finally, the components section holds
all of our hardware or software components: parts that can be split and modularized
for ease of testing and usage. A graphical overview can be found in appendix A.

4

3 Autonomous

We accomplish all of the main tasks in our autonomous: de-latching, sampling,
claiming, and finally parking. However, I also intend on accomplishing these tasks in
a “clean” way: this means well-structured, easy-to-read code, modularization, and
maximum efficiency.

3.1 Abstractification for Great Good

Over time, we’ve realized that there are many common repeated actions: move-
ment to a specific location, sampling, de-latching, etc. This has led us to abstract
over these tasks, as detailed in the next subsections.

3.1.1 Command System

This year, we’ve decided to implement a command system. What this means is
that commonly used sequences of code are split into their own class. For example,
the code for moving to a certain location is all put into MovementCommand. Each
one of these extends the abstract Command class, which defines an abstract method
executeCommand that is used by a defined method execute, which allows them to
be initialized with their own sensible set of parameters while maintaining a common
interface. execute takes in all of the current robot component classes as its param-
eters, and so each Command can use any of those provided component classes: e.g.
NavigationalState or Drivebase. Continuing the example, the MovementCommand

is initialized with its own target direction and vector location, and then is executed
with the execute method common to all Commands. This is the structure that all of
the Commands follow:

public class MovementCommand extends Command {

// Command-specific fields

private VectorF targetPosition;

private float targetHeading;

private boolean forward;

// allows for appropriate/efficient constructors

public MovementCommand(float x, float y, float targetHeading, boolean

forward) {

this(new VectorF(x, y), targetHeading, forward);

}

5

public MovementCommand(VectorF targetPosition, float targetHeading,

boolean forward) {

this.targetPosition = targetPosition;

this.targetHeading = targetHeading;

this.forward = forward;

}

void executeCommand(NavigationalState navigationalState,

InertialSensor imu, VisionProcessor visionProcessor, MainRobot

mainRobot, Telemetry telemetry) {

...

}

}

With this common interface, we can simply create a list of Commands and iterate
through that list, calling execute on each one. Following from this idea, we simply
have a separate list of Commands for each starting location, which are well-defined
and easily understandable. An example list of these Commands is given below:

Command[] commandList = new Command[] {

new BeginCommand(), // run beginning code

new HookControlCommand(ElevatorHook.State.FullyExtended), // fully

extend the elevator

new MovementCommand(609.6f, -609.6f, -45, true), // move to (609.6mm,

-609.6mm), face -45, move forwards

new SampleCommand(), // sample

new MovementCommand(525f, -525f, -45, false), // move to (525mm,

-525mm), face -45, move backwards

new MovementCommand(1524f, 304.8f, 90, true), // move to (1524mm,

304.8mm), face 90, move forwards

new MovementCommand(1524f, 1219.2f, 90, true), // move to (1524mm,

-1219.2mm), face 90, move forwards

new ClaimCommand(),

new MovementCommand(1524f, -609.6f, 90, false), // move to (1524mm,

-609.6mm), face 90, move backwards

new ArmDeployCommand(), // deploy the arm

new FinishCommand() // run finishing code (especially cleanup)

};

As one can clearly see, this list of Commands simply runs something at the be-
ginning, then fully extends the hook, moves, samples, moves, claims, moves, deploys

6

the arm, and finishes.

3.1.2 Compatibility with the FTC Stop System

This system of having separate components and separate Commands is incredible
for clarity and modularization; however, it does not come without its downsides.
The FTC app relies on LinearOpModes to take into account the state of the output
of OpModeIsActive() method in order to stop the program on time. If this variable
is not taken into account and the program is not ended soon after the state of the
OpModeIsActive() method is changed to false, the FTC app simply crashes. Because
this method is only accessible from the LinearOpMode class and all of the components
and Commands do not necessarily have access to the class that is using them, we are
faced with a problem of stopping on time. In order to rectify this issue, we decided
to spawn another thread that would check the output of the method in question and
change a global variable OPMODE ACTIVE that is accessible by the components and
Commands. For thread-safety, this variable is wrapped in a Mutex which ensures that
changes are synchronized throughout threads.

3.1.3 Asynchronous Programming

The increased modularization we have introduced in the previous sections, cou-
pled with an update to the phones that allows us to use Java 8, has given us an
interesting opportunity in the form of the possibility of easy asynchronous pro-
gramming. With Java 8 comes CompletableFuture, which allows the creation of
CompletableFutures that can be executed either with a threadpool or simply asyn-
chronously on one thread. A CompletableFuture represents the result of an asyn-
chronous computation, and provides many methods to chain, join, or run them in
parallel. This is far simpler and easier to keep track of than keeping state vari-
ables for each and every action that we want to do, and lets us create arbitrary
execution trees of Commands that we want to run in a combination of serially and
in parallel. These CommandTrees can then be simply parsed and run as a series of
CompletableFutures. However, because of the difficulty of debugging asynchronous
commands and general time constraints, the CommandTree system has been largely
left unused despite its completion. In our first competition, we had issues within
our code that were hidden under many layers of callbacks and were not immediately
obvious when they showed up, as the error logs only indicated that the threadpool
had broken somewhere, and not where or in what computation.

7

3.1.4 Future Improvements

In the future, we fully intend on continuing our current modularization approach,
and potentially modelling the components in a similar way to the Command system:
one single abstract Component class that would provide both wrappers and a shared
interface that each Component would implement. The ArmDeployCommand is still to
be implemented, and could be helpful in providing a set way of deploying our arm
without direct control from the driver, saving us driver-controlled time. There is
definitely some way of working around the FTC app stop system that is better than
our current approach, likely through the usage of callbacks. Finally, the asynchronous
system is likely to be pushed into production code, as this would allow us to bring
down the elevator on our robot while the robot performs other actions, saving us
valuable time during the autonomous section, and potentially even in the driver-
controlled section as well. This would involve further expansion on the debugging
process present with this method and having a better way to initialize a tree than
nested initialization calls.

8

3.2 I Know De Way: Path System

We have briefly touched on our motion commands in the previous section. How-
ever, it is worth having an in-depth discussion of our motion and path system on
its own. Our motion commands all work with an absolute coordinate system. This
means that any MovementCommand we run takes in absolute coordinates and angles,
and so makes the adjustment or creation of autonomous paths far easier. After the
MovementCommand is written, the most we have to do is write in the numbers that
correspond to the wanted target positions on the field. No extra calculations with
relative coordinates have to be done by hand: the program does it for us. The way
we implement this system is fairly simple. at the beginning, we know the absolute
position and orientation of the robot can only be of 4 set positions, which is known
by which OpMode is run. We store this information (position and heading) in a
NavigationalState as a vector and a scalar, respectively. Then, whenever we want
to move to a new position, we find the needed orientation and position changes, and
use a transformation matrix determined by the robot’s current orientation and po-
sition to convert this displacement from field-relative to robot-relative coordinates.
After the motion is complete, we update the NavigationalState with the target
position and orientation.

3.2.1 Future Improvements

There’s still much to be done in this respect. Lots of methods are available for
smoother or faster motions, such as the usage of actual trajectories and splines to
plan paths, especially for a 2DOF robot. We intend on reading through the code
provided and perfected by ACME Robotics (#8367), the Road Runner library [4],
which implements all of these wanted capabilities with adequate documentation.
In addition, the current system assumes that the robot perfectly reaches its target
location, which many times is not true. This should be easily solvable by using
the odometry vales rather than the target values for the update after movement.
Finally, in the far future we want to do some experimentation with SLAM libraries
(specifically ORB2-SLAM [2]) to give our robot navigational capabilities in case of
disturbance. This idea is elaborated upon in section 3.5.

9

3.3 I Can See Clearly Now: Sampling

Sampling initially seemed like the hardest part of this year’s game, with materials
that didn’t conform to the usual RGB cutoff values and the necessity of detecting
multiple items. However, with the existence of OpenCV and the later release of
builtin TensorFlow Lite code and models for the FTC SDK, this task has grown to
be fairly straightforward.

3.3.1 Initial OpenCV Experimentation

With the release of the game came multiple images and videos of the field and
game elements provided by people such as Sohom Roy. Prior to the game, we had
knowledge of the GRIP [5] program, provided by WPI, which allows for fast pro-
totyping of OpenCV algorithms along with live preview of the pipeline on sample
images. Upon suggestion by other teams, we started with experimenting with thresh-
olding and filters on the HSV, YUV, and LAB color spaces, which gave fairly good
results when combined and merged together, contoured, and filtered by area. Some
example results are shown below:

10

3.3.2 OpenCV Issues

However, this approach still has caveats. For one, when the lighting was darker
or lighter than expected, less than the required amount or huge chunks of the field
would be detected as balls and cubes. An example of this issue is shown below:

11

We tried to solve this problem with the watershed algorithm, which essentially erodes,
contours, and then re-expands groups of pixels in the image. Even then, the results
were questionable, but they seemed to work well enough for the given parameters
(few objects, spaced far apart, in ok lighting). In trying to add in the watershed
algorithm, we found that the GRIP pipeline had issues with its implementation, so
we had to export our existing code and then add in the watershed code manually.

3.3.3 The Current State (TensorFlow Lite)

Around a month after the release of the game, our buddies at FTC decided to
release an update to the FTC SDK that included builtin TensorFlow Lite support and
a pretrained model, which made sampling almost trivial. The major concern with
this method is increasing the accuracy of object detection, generally by improving
lighting conditions or adjusting the camera’s distance from the minerals. During this
time, we tried with the phone’s flashlight both on and off, with varying amounts of
success, and have added a webcam in order to have a closer sample. A bare minimum
object detection program is shown below that demonstrates how simple the usage is:

TFObjectDetector tf; // initialization sequence omitted

List<Recognition> updatedRecognitions = tf.getUpdatedRecognitions();

if (updatedRecognitions != null) {

for (Recognition recognition : updatedRecognitions) {

if (recognition.getLabel().equals(LABEL_GOLD_MINERAL)) {

// process a gold mineral

} else {

// process a silver mineral

}

}

}

3.3.4 Future Improvements

The most that can be done on this front is perhaps an integration of OpenCV
algorithms for preprocessing with TensorFlow, or our own model, which has potential
to further increase accuracy. However, annotating and tuning the model is extremely
time-intensive, which is why improving this aspect of our autonomous is fairly low
on our priority list.

12

3.4 I’ve Gotta Feeling: Sensor Integration

This year, our robot has grown to be more of a well-informed citizen than our
robot from last year. It has gained a sense of direction and control in the form of
limit switches, gyroscopes, and encoders, which allow it to be far more effective in
the autonomous mode.

3.4.1 Limit Switches

Currently, there is one limit switch mounted on our elevator with 3 triggers,
which allow the robot to extend and contract the elevator on command without
going too far up or down. This essentially eliminates any sense of encoder drift
or inaccuracy, and has proven to be extremely effective no matter what we change
about our elevator (switching from chain to string, rack and pinion to linear slide).
This system is described easily with a state machine, with 3 on-switch states and
2 off-switch states that are in-between the on-switch states. By simply giving the
direction of motion and the initial state of the elevator, we can maintain knowledge
of the current position of the elevator and constrain its movement.

3.4.2 Gyroscope

This year we’ve begun to use the gyroscope to get our orientation relative to our
starting position, which has allowed us to gain greater accuracy and remove much
of the error introduced by encoder drift in both straight driving and turning. With
this sensor feedback, we have effectively started to gain more variables that we can
sense and control through PID feedback, opening the doors for far faster and more
accurate motion. Compared to the previous encoder-based method, our turning and
straight-line motion is far more accurate and consistent, and allows the robot an
accurate way of self-correction.

3.4.3 Vuforia

While not used this year because of the lack of necessity, we have still retained
and updated our Vuforia code from last year. Our Vuforia code allows us to get
the absolute position of the robot on the field through a series of transformation
matrices, and so may be used later in order to track and further eliminate motion
error.

13

3.4.4 Future improvements

In the future, we plan to add more limit switches and a gyroscope to the arm, in
order to allow automatic deployment of the arm. There is a potential to add distance
sensors on the sides of the robot for collision detection, but from what we’ve seen,
this is not yet necessary.

14

3.5 The Circle of Life: PID and General Control

PID control [7] is perhaps one of the most fundamental methods of feedback
control in control theory. In essence, the error, derivative of error, and integral
of error are linearly combined in order to get the final amount by which to tune
whatever process is capable of changing the error, packed beautifully into the below
equation:

u(t) = Kpe(t) +Ki

∫ t

0

e(t′)dt′ +Kd
de(t)

dt

In this way, the robot can adapt to minor changes due to disturbance and rely more
on its odometry than by dead reckoning in order to get both consistent and accurate
results.

3.5.1 Usage

On our robot, we use PID control for a lot of subsystems: forward motion,
turning, and arm movement, and fully intend on making it used by more. The
major usage is in forward motion and turning. In forward motion, each motor has
its own PID controller, and there is another PID controller running on the error of
the gyroscope. The output of all three of these PID controllers are combined to get
the motor powers wanted in order to keep the robot driving straight. In turning, we
have only the gyroscope PID controller, which controls both motors and allows for
precise turning without overshooting, thanks to the integral coefficient.

3.5.2 Tuning by “Experienced Personnel”

In tuning, we chose to go with the manual method in order to gain more expe-
rience with the process, and because we don’t have a sufficiently accurate physical
model of our robot to use some of the automatic methods. The manual method con-
sists of first setting Ki and Kd to 0, and then increasing Kp until the system reaches
steady oscillations [7]. After this point is reached, Kd is increased until the system
is critically damped, and then Ki is increased until the system overshoots very little
or does not overshoot at all. This whole process was made far easier with the help
of the FTC Dashboard [3] software made by ACME Robotics (#8367), which allows
for live hot-swapping and tuning of variables, especially those of Kp, Ki, and Kd.

3.5.3 Issues

Over the course of the tuning process, we’ve learned that PID control is extremely
hard to execute when the voltages are constantly changing. Over the course of the

15

match, voltage is steadily dropping, and so unless voltage is constantly increased,
the tuned coefficient values can make the robot over- or undershoot even when it
works at another voltage.

3.5.4 Future Improvements

To solve the aforementioned issues, we intend to add a voltage feedforward co-
efficient to the motors in order to account for differences in voltage. In addition,
we are considering using better tuning methods in order to increase the speed that
we tune at (we can tune about one PID controller a day). But even then, PID or
even PIDF has its limitations. To this end, we plan on learning more control theory
to the point that we have a basic understanding of Ramsete and can implement it,
which is touted to be virtually impervious to outside disturbances when given good
odometry, and can account for the physical constraints of our robot in terms of size,
maximum acceleration, maximum velocity, etc.

16

4 Driver Controlled

4.1 Towards a Sensor-Assisted Driver

Even with the brain power that humans have, a driver can’t do everything at
once. Accounting for error and making motion smooth can go a long ways towards
improving the interaction between hardware, software, and driver.

4.1.1 Learning to Dual Wield: Control Layout

Our control layout was finalized as soon as our strategy was finalized, and is as
follows:

• Left Joystick Drive/Turn

• Right Joystick Drive/Turn

• DPad Arm Rotation

• R/L Bumper Arm Extension

• R/L Trigger Intake Control

One may notice that both the left and right joysticks control the same thing. This
is intentional, as it allows the driver to use one side of the gamepad to drive while
using the other side to control other parts of the robot, effectively allowing control
to be switched on a whim. In addition, the joystick inputs are taken to the 5th
power: this is to preserve sign and in order to account for the nonlinearity of the
motors. By taking the inputs to a higher power, lower values have less of an effect
while higher values gain more effect, which maps better to the logarithmic sensory
processing that humans do.

4.1.2 The Elevator

Because all of the modules and components used by autonomous are also available
to the driver, we are able to use the same limit switching system in driver-controlled
without any additional code. This means that the driver can move the elevator in a
constrained manner to prevent undue strain.

17

4.1.3 Arm Control (WIP)

Controlling the arm has been one of the biggest challenges that the software side
has faced. Because our arm rotates on an axis perpendicular to gravitational force,
it has nearly constantly changing force applied on it. Even the simple PID control
has trouble dealing with this. In order to remedy this, we intend on implementing
sensors on the arms that will detect the angle of the arm from horizontal, θ, and
the angular velocity of the arm, ω and feeding this forward into a control algorithm.
The form of this theoretical algorithm is given below:

Parm = Kpεω +Kd
dεω
dt

+Ki

∫ T

0

εωdt+Kω
1

ω
+Kθ cos θ

The first part of this is a normal velocity PID, but then there are two additional
terms. The Kω term should account for the motor speed-torque tradeoff, while the
Kθ term should account for the change in gravitational force due to angle. However,
this requires a gyroscope small enough to be mounted on the arm, which is discussed
next.

18

5 Writing an I2C Driver

5.1 Introduction

In order to add a gyroscope to the arm, an MPU-6050 gyroscope was purchased
and prepared hardware-wise by soldering on headers, printing a case, and creating
the correct I2C wires. In addition, a physical test-bed to replicate its usage on the
arm was made. However, because this sensor has no pre-existing Java I2C driver, we
had to implement it ourselves with the help of the FTC I2C Guide.

5.2 Register Mapping

The first thing we did was find the register mappings on the sensor that we
wanted. These were easily found through the official register mapping document
provided by the manufacturer. The register mappings we used are listed below.

19

These registers were each one byte long, which differed from the original FTC and
had to be modified to fit. In addition, some values were offset bit-wise, which meant
that we had to use bit-shifts to set and get the correct values.

5.3 Register Caching

The I2C device generally should have cached/batched reads, as individual register
reads are extremely expensive and slow. However, as we would later find out, the
maximum register address space that can be cached by the builtin I2cDeviceSynch

is only 26 register addresses long, and so we couldn’t just cache the entire register
space. Instead, we chose only the accelerometer and gyroscope registers (3B to 48)
to batch read, as those were the registers that we would be consistently reading at a
high frequency.

5.4 Generalization (Parameters)

The MPU 6050 sensor is actually highly customizable in its settings, in that
it allows for modification of the sensitivity of its measurements. For example, the
accelerometer can be set on a range of ±2g ±4g, ±8g, and ±16g, depending on
the values written to its configuration registers. We attempted to generalize these
settings by creating enumerations representing all of the possible values in each

20

configuration bit or register, and then asking for a set of these enumerations, or
Parameters on initialization. Some of the included configuration options are:

• EXT SYNC SET External Frame Synchronization bit location

• DLPF CFG Digital Low-Pass Filter Configuration

• FS SEL Gyroscope Sensitivity

• AFS SEL Accelerometer Sensitivity

• TEMP DIS Temperature Sensor Switch

• CLKSEL Clock Selection (internal vs gyroscope vs external)

5.5 Unresolved Issues

For the most part, there were actually very few bugs in our experience coding
this driver, the cache buffer-length error being one and an issue with the reset being
another. The register that is supposed to allow the device to reset is, according to
the documentation, supposed to be switched back to 0 after successfully resetting.
However, when we tested this, the switch simply never happened, and so we haven’t
yet been able to figure out how to reset the device, although bug-fixing is in progress.

5.6 Sensor Fusion (WIP)

By themselves, the accelerometer and gyroscope provide very poor readings of
the gyroscope, with the accelerometer doing well in stable positions and being ut-
terly demolished in motion, while the gyroscope’s variance tends to accumulate into
angular error when integrated over long periods of time. To solve this, we intend to
use sensor fusion algorithms in order to get the best of both worlds. We consider a
model where the sensor is mounted on an arm at an angle θ from the horizontal and
rotating with an instantaneous angular velocity ω. The sensor is located a distance
r from the axis of rotation, and has its y-axis orthogonal to the radial vector while
the x-axis points towards the right of the y-axis. Let the values experienced by the
sensors be ay, ax, and ω, being y-axis acceleration, x-axis acceleration, and angular
velocity, respectively. We can apply a complementary filter to the values of θaccelometer

and θgyroscope in general:

θ = Kaθaccelerometer +Kgθgyroscope

21

For some values Ka and Kg such that Ka +Kg = 1.
First, we consider getting the values of θ from the sensors themselves in a sim-

plified version. By inspection:

θaccelerometer = arctan(
−ay
ax

)

θgyroscope =

∫ T

0

ω(t)dt

In discretized form for easier translation to code:

θgyroscope = θt−1 + ω(t)dt

Applying the complementary filter to this and substituting, we find the discretized
form:

θsimple = Ka arctan(
−ay
ax

) +Kg(θt−1 + ω(t)dt)

Now we move onto a more complex variant of this, where the values are affected by
both centripetal and gravitational accelerations ~ac and ~ag respectively. The gyroscope
remains unaffected. These can both be absolutely represented in vector form:

~ac = −ω2r

[
cos θ
sin θ

]

~ag =

[
0
−g

]
The vector sum of absolute external accelerations on the sensor is thus

~anet =

[
−ω2r cos θ

−ω2r sin θ − g

]
To convert from absolute to sensor coordinates, we can use the transformation matrix
T :

Tθ ~anet = ~asensor

where

Tθ =

[
− sin θ − cos θ
cos θ − sin θ

]
Solving for θ, we find that

θaccelerometer = arctan(
ω2r − ay

ax
)

22

This simplifies to our original equation when the arm is not moving. Our final sensor
fusion equation is thus:

θcomplex = Ka arctan(
ω2r − ay

ax
) +Kg(θt−1 + ω(t)dt)

5.7 Credits

During this process, the FTC I2C Driver Writing Guide [1] was extremely helpful
- without it we wouldn’t know where to start.

23

6 Teaching

6.1 Philosophy and Objectives

To me, teaching is extremely important. It’s a way to show that I actually know
what I’m talking about. It’s a way to pass down knowledge and experience to the
next generation. But more importantly, it’s also how I get to see the up-and-coming
programmers on the team think and reason.

“Missing an edge case—but otherwise good idea.”
“Could use some work: have you considered using a boolean instead?”
“Good idea, I hadn’t thought of that!”
These were some of the comments I wrote while grading my first robotics pro-

gramming assignment. As the lead programmer for my school’s robotics team, I
was and still am in charge of training the new programmers on the team. My first
assignment was fairly simple: given an “elevator” which could move up and down,
and two sensors at different heights, I wanted my teammates to write a program to
move the elevator to one of those heights. But grading those assignments turned out
to be far more eye-opening than I expected.

Before I started grading, I had a notion of how I would solve the problem: use
a boolean to keep track of whether the sensor is triggered, and repeatedly check for
when it did to determine when to stop. While some of the solutions I saw were close
to this, none of them were ever “exactly” what I had envisioned.

Some of the solutions took advantage of how the elevator took a certain time
to move. Others used different variables. Some of these methods I had thought
of before, but others I had not. Some even had better ideas than my own. And
although some of them were wrong, each and every one of their solutions was unique
and had its own reasoning.

Grading these assignments has given me insight into how diverse my teammates’
ideas are and how they implement them. While I value my own opinions and ideas,
as a leader and a teacher I strive to maintain a balance between my own and others’
ways of thinking. Every comment I leave on their assignments has the potential to
shape how they problem solve in the future and potentially how they teach others.
Because of this, I place an extremely large emphasis on preserving the eccentricities
of the ways my teammates think. It’s only when we develop a diversity of ideas that
we can truly innovate.

24

6.2 First Assignment: 2-Stop Elevator

The first assignment was to implement my first elevator design, which was a
single limit switch with two triggers. The objective was to implement two methods,
extend and contract which would set the elevator to an extended or contracted
state, respectively. It was given that the elevator started in a fully contracted state.
The code can be found in appendix B.1.

6.3 Second Assignment: Drivebase Math

The second assignment [8] involved implementing the main math function for
autonomous driving, which was to convert and get the relative movement given the
target movement. It mirrors the actual code very closely in order to give some sense of
realism. I asked the students to specify mathetmatical helper functions to normalize
angles, and then to define the sequence of calculations and movements that would
correctly move the robot to the target location and heading. The code can be found
in appendix B.2.

25

6.4 Third Assignment: Further Implementation of Drive-
base (WIP)

The third assignment is intended to build upon the second one, leading students
towards PID control and explaining some of the theory behind it.

26

A File Hierarchy Diagram

The total code is far too large to put in, so we have included a diagram of the
overall structure of our project on the next page.

27

28

29

B Assignment Code

B.1 Assignment 1

public class RackAndPinionWithLimitSwitch {

// NOTE: you’re given that the rack and pinion starts in a fully

contracted state,

// with the switch initially pressed.

//

// GIVEN FUNCTIONS: ignore the body, just consider input and output as

if they were true,

// the dummy body is just to make it compile so its easier to work on

// sets the motor speed (up is 1, down is -1, stop is 0)

private void setMotorSpeed(int speed) {}

// gets whether the switch is currently pressed

private boolean switchPressed() {return false;}

// WORKSHEET

// add your stuff here (variables, private functions, body of extend

and contract, etc)

// move the rack and pinion to a fully extended state

public void extend() {

}

// move the rack and pinion to a fully contracted state

public void contract() {

}

}

30

B.2 Assignment 2

Drivebase.java

public interface Drivebase {

// assume that all of these functions work perfectly

void rotate(float angle); // angle in radians

void forwardDrive(float x); // x in mm

}

ExtendedMath.java

public class ExtendedMath {

// TODO: implement this

public static float normalizeRadians(float radians) {

// should take in any number of radians, and output the equivalent

in the range [-pi, pi]

// do NOT use a loop.

// hint: maybe make another function called normalizeRadians2pi

which normalizes to [0, 2pi] first

return 0;

}

}

NavigationalState.java

public class NavigationalState {

private float heading;

private Vector2F position;

public NavigationalState(float heading, Vector2F position) {

this.heading = heading;

this.position = position;

}

public float getHeading() {

return heading;

}

public Vector2F getPosition() {

return position;

}

31

public void setHeading(float heading) {

this.heading = heading;

}

public void setPosition(Vector2F position) {

this.position = position;

}

}

Robot.java

public class Robot {

// assume that these are set/nonnull

private Drivebase drivebase;

private NavigationalState navigationalState;

public void moveTo(float x, float y, float heading) {

moveTo(new Vector2F(x, y), heading);

}

// TODO: implement this

public void moveTo(Vector2F targetPosition, float targetHeading) {

// move to the given position and heading

// you should only have to use things that are within these files

}

}

Vector2F.java

public class Vector2F {

private float x;

private float y;

public float getX() {

return x;

}

public float getY() {

return y;

}

32

public Vector2F(float x, float y) {

this.x = x;

this.y = y;

}

// for all of these functions, you are allowed to use java Math

builtins only.

// TODO: implement this

public Vector2F subtract(Vector2F subtrahend) {

// return this - subtrahend

return null;

}

// TODO: implement this

public float getAngle() {

// get the angle CCW from the +x axis

return 0;

}

// TODO: implement this

public float getMagnitude() {

// get the magnitude of the vector

return 0;

}

}

This assignment was graded with this grading scale:

• Style consistent spacing, naming (camelCase), indentation, structure, etc. - 20
points

• Clarity comments explaining your methodology and thought process, reasonable
variable naming - 20 points

• Functionality does everything work, is it as specified, and if it is a ”good”/correct
solution - 60 points

• Total 100 points

33

Bibliography

[1] FTC Engineering. Writing an I2C Driver. https://github.com/ftctechnh/

ftc_app/wiki/Writing-an-I2C-Driver.

[2] J. M. M. Montiel Raul Mur-Artal, Juan D. Tardos and Dorian Galvez-Lopez.
ORB-SLAM2. https://github.com/raulmur/ORB_SLAM2.

[3] ACME Robotics. FTC Dashboard. https://acmerobotics.github.io/

ftc-dashboard/.

[4] ACME Robotics. Road Runner. https://github.com/acmerobotics/

road-runner.

[5] WPI Robotics. GRIP computer vision engine. http://wpiroboticsprojects.

github.io/GRIP/.

[6] Tyler Veness. Practical Guide to State-space Control.

[7] Wikipedia. PID Controller. https://en.wikipedia.org/wiki/PID_

controller.

[8] Edward Yang. auton drive learn. https://github.com/efyang/auton_drive_

learn.

34

https://github.com/ftctechnh/ftc_app/wiki/Writing-an-I2C-Driver
https://github.com/ftctechnh/ftc_app/wiki/Writing-an-I2C-Driver
https://github.com/raulmur/ORB_SLAM2
https://acmerobotics.github.io/ftc-dashboard/
https://acmerobotics.github.io/ftc-dashboard/
https://github.com/acmerobotics/road-runner
https://github.com/acmerobotics/road-runner
http://wpiroboticsprojects.github.io/GRIP/
http://wpiroboticsprojects.github.io/GRIP/
https://en.wikipedia.org/wiki/PID_controller
https://en.wikipedia.org/wiki/PID_controller
https://github.com/efyang/auton_drive_learn
https://github.com/efyang/auton_drive_learn

	Introduction
	General Program Structure
	Autonomous
	Abstractification for Great Good
	Command System
	Compatibility with the FTC Stop System
	Asynchronous Programming
	Future Improvements

	I Know De Way: Path System
	Future Improvements

	I Can See Clearly Now: Sampling
	Initial OpenCV Experimentation
	OpenCV Issues
	The Current State (TensorFlow Lite)
	Future Improvements

	I've Gotta Feeling: Sensor Integration
	Limit Switches
	Gyroscope
	Vuforia
	Future improvements

	The Circle of Life: PID and General Control
	Usage
	Tuning by ``Experienced Personnel"
	Issues
	Future Improvements

	Driver Controlled
	Towards a Sensor-Assisted Driver
	Learning to Dual Wield: Control Layout
	The Elevator
	Arm Control (WIP)

	Writing an I2C Driver
	Introduction
	Register Mapping
	Register Caching
	Generalization (Parameters)
	Unresolved Issues
	Sensor Fusion (WIP)
	Credits

	Teaching
	Philosophy and Objectives
	First Assignment: 2-Stop Elevator
	Second Assignment: Drivebase Math
	Third Assignment: Further Implementation of Drivebase (WIP)

	File Hierarchy Diagram
	Assignment Code
	Assignment 1
	Assignment 2

	Bibliography

